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Abstract

Define-by-run deep learning frameworks like PyTorch provide increased flexibility
and convenience, but still require researchers building dynamic models to manually
vectorize their networks in order to achieve the performance benefits of minibatch-
ing. We describe an automatic batching framework that keeps track of batch-level
masking and padding and rewrites data-dependent control flow, and present two
implementations: a prototype in an external package, and the second integrated
with PyTorch’s recently introduced compilation infrastructure. These tools let users
implement their models as imperative code that applies to individual data samples,
then efficiently train and validate them on batched data; they simplify model code
and eliminate a class of implementation bugs by allowing programmers to work di-
rectly at a more natural level of abstraction. When the batching transformation runs
ahead of time as a part of the PyTorch compiler, our approach has less overhead
than other autobatching strategies for define-by-run frameworks.

1 Introduction

One commonly-cited advantage of imperative frameworks like DyNet [Neubig et al., 2017a], Chainer
[Tokui et al., 2015], PyTorch [Paszke et al., 2017], TensorFlow Eager, and Flux.jl over graph-based
frameworks like Theano [Al-Rfou et al.] and TensorFlow [Abadi et al., 2016] is that they make it
easier to implement highly “dynamic” neural networks [Tokui et al., 2015]. These are networks
which execute different sequences of operations depending on the structure or content of input data
(e.g., as in Socher et al. [2013]) or the results of intermediate computations (as in Dyer et al. [2016]).

This is true in the sense that every dynamic network can be implemented in an imperative framework
using language-native control flow like Python’s for and if—but such an implementation will
typically only work correctly at batch size one. Since training with larger batch sizes is essential to
take advantage of modern parallel hardware, the next step is often to manually convert all or part of
the network into a “vectorized” form that operates at once on entire minibatches.

When implementing models for sequence data with varying length, for instance, this process requires
adding padding to align different-sized arrays and masking the resulting batches to avoid performing
computations with invalid data. Programmers must ensure that mask metadata is correctly propagated
through the operations in their neural networks. Many uses of language-native control flow must also
be rewritten, including example-dependent branches and loops over variable-length dimensions.

We describe a methodology for automating these transformations, and provide first a prototype imple-
mentation as a PyTorch library called Matchbox3 and, subsequently, a more optimized implementation
integrated with the PyTorch compiler as a pass4 over PyTorch “Torch Script” IR.

∗Work done while the author was at Salesforce Research
†Work done while the author was an intern at Facebook AI Research
3https://github.com/salesforce/matchbox
4https://github.com/pytorch/pytorch/tree/master/torch/csrc/jit/passes/to_batch.cpp
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2 Approach

Our proposal consists of two relatively independent sets of functionality: automatic mask propagation
and control flow rewriting.

2.1 Batch type and mask propagation semantics

A minibatch comprises a number of data or activation samples, each potentially with a different shape.
These shapes may be fixed in some dimensions, corresponding to model constants like the number of
neurons in a particular layer, while varying among examples in the batch in other dimensions, like
the number of timesteps in a recurrent encoding. Our approach overloads array and neural network
operations on a Batch type that holds such a minibatch.

The data values in a Batch are stored in a padded array whose size is the minibatch size in the first
dimension, the common size of all examples in static dimensions, and at least as large as the largest
example in the batch in dynamic dimensions. Shape information is stored in a mask array whose
dimensions are the same size as the data array except in static dimensions, where the mask is of size
one to avoid redundant storage. Each entry in the mask corresponds to one or more entries in the data
array (singleton—i.e., static—dimensions are broadcasted), with a one in the mask denoting that the
corresponding data entries represent valid, meaningful data and a zero denoting that they do not.

As in the NumPy Masked Array library [Dubois, 2001], which implements similar semantics,
operations overloaded for the Batch type satisfy the invariant that invalid values in their inputs never
affect valid values in their outputs.

2.2 Control flow rewriting

The system rewrites control flow in a way closely inspired by the single-program multiple-data
(SPMD) programming model used by Intel ISPC [Pharr and Mark, 2012] and (under the name SIMT)
NVIDIA CUDA [Nickolls et al., 2008]. The control flow rewriting pass—operating on either a
Python AST or PyTorch IR—creates an “execution mask” that identifies at runtime which side is
taken of a conditional, and which iterations are traversed in a loop, for each example in a batch. Every
operation that updates a loop-carried dependency, or sets a variable that will escape the context of a
conditional body, is rewritten to have its effect gated by the execution mask.

3 Related Work

There are two existing toolkits for automatic batching: TensorFlow Fold [Looks et al., 2017], which
introduces an embedded domain-specific language (DSL) with implicitly vectorized functional
semantics, and DyNet autobatch [Neubig et al., 2017b], which lazily constructs computation graphs
for each example before applying vectorization as a global graph optimization strategy.

Compared to these tools, our approach has the advantage of permitting true dynamic control flow—
e.g., conditionals that switch on runtime data values—without requiring costly recompilation at
runtime. The SIMT assumption that our system makes—namely, that computations performed by
same line of code as applied to different examples are likely to be able to be batched together—enables
it to achieve runtime overhead that is O(1) in the batch size rather than O(N) or worse, but this
comes at the cost of reduced generality (e.g., our approach does not support recursion).

4 Conclusion

Much as automatic differentiation allows programmers to avoid having to derive gradient expressions
by hand, automatic batching tools abstract away the details of vectorization and allow researchers
to implement their networks at the level of individual examples. We have presented an alternative
approach to this task that draws on ideas from the programming language and compiler communities
and which we hope will help satisfy the research community’s desire for more powerful and ergonomic
abstractions for deep learning.
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